

Open optical Networking

a Cornerstone of Multilayer Integration

ggrammel@juniper.net

Content

- Packet vs. Optical a cultural problem!
- 2. (Open) Optical Networks a culture evolution
- 3. Reassembling the Remains
- 4. Where do we go from here?
- 5. Summary: Packet-Optical Networking

Packet vs. Optical - a cultural problem!

Networking paradigms

IP Networking

- A network consists of nodes and links.
- All processing is done at nodes, links have no processing capabilities
- 3. The boundary of a network is determined by protocols and policy rules
- 4. IP traffic is a common denominator
- 5. Network management means configuring endpoints, the rest is left to the control plane
- 6. Setting up MPLS-LSPs is "for free". Enough labels are available, no bandwidth wasted.

Transport networking

- A layered network consists of node and links, all networks are layered
- 2. Processing is performed in layers, a link is a server-layer trail that is processed
- 3. The boundary of a network is either
 - 1. A layer boundary or
 - A implementation boundary (i.e. vendor specific) or
 - 3. An administrative boundary (different organizations)
- 4. There is no single payload format
- Network management is about configuring each point along a route
- 6. Setting up circuits has high cost. Only limited number of Time/Lambda-slots, bandwidth is reserved.

Optical Networks - 1

Cloud Networking in 1980s:

- Dial-tones between different countries differed
- Basic connectivity could be achieved
- Use same modem vendor for best performance
- → vendors had the incentive to keep interoperable performance low or nonexistent

The beginning of DWDM technology 1990s:

- Every Transponder module has it's own proprietary format
- Basic frame format is the same (OTN) and can be supervised similarly
- Vendors have the incentive to stay proprietary
- Boundary is considered a layer transition

Optical Networks - 2

Evolution from DWDM to Optical Networks 2000s

- ROADM becomes an Element of optical networking
- Wavelength route is configurable
- The optical network remains a closed system
- Still a single vendor play
- Boundary is still considered a layer transition
- Network planning for optical performance is key

Somebody else's Problem

Open Optical Networks - a culture evolution - 3

Somebody else's Problem

Evolution towards **Open** Optical Networks 2010 **Transport view!**

- Boundary is no more a layer transition:
- Alien Wavelength: both ends still supplied by the same vendor (TXP-B to TXP-B)
- Network reserving some spectrum for 3rd party Transponders
- Configure ROADM to pass/drop the spectrum
- no idea how to manage, so leave everything to somebody else:
 - How to plan alien wavelength?
 - What should be the expected Signal quality?
 - How to measure signal quality?
 - How to configure a TXP?
 - Problem resolution: if receiver doesn't receive a signal: who's problem is it?
 - a) Transmitter doesn't transmit
 - b) ROADM is not in pass-through
 - c) ROADM doesn't add/drop
 - d) Receiver doesn't receive

Open Optical Networks - a culture shock - 4

Somebody else's Problem

This is the network we wanted to build:

- We do not want to care about which vendor provides which node
- 2. Hub&spoke architecture, not p2p
- 3. P and PE routers are different beasts from different vendors

So this means

- 1. Requires to install the same single vendor TXP-modules on both ends of the wavelength
- 2. System vendors obliged to integrate TXP-modules from multiple vendors
- 3. Control software needs to manage pieces in a third party equipment

Open Optical Networks - a culture shock - 5

Packet-optical Networks this is the network we want to build:

- 1. We do not want to care about which vendor provides which node: Interoperability of TXP Interfaces!
- 2. Hub&spoke architecture, not p2p
- 3. P and PE routers are different beasts from different vendors.

So this means

- 1. Transponders of different vendors need to talk to each other!
- 2. Line system designed to transport any wavelength from any vendor
- 3. Control software disaggregated from the HW

Managing Multivendor Optical Networks

Managing Networks composed of vendor islands is a pain Adding different technologies makes things worse

Here how it works combining two controllers: https://www.youtube.com/watch?v=z8qo-uiAq58&pbjreload=10

Open Optical Networks: Reassembling the Remains

Reassembling the Remains

Where are we in 2018?

TIP-PSE: Multi-vendor optical performance planning

- TXP interoperability
 - 100G ITU-T 709.3 (target approval 2018)
 - 200G and beyond: OpenROADM-MSA (target approval 2018)
 - 400G-ZR Ethernet: OIF (target approval 2018)

- Management and control
 - OpenROADM version 3.1 (under approval)
 - OpenConfig
 - ONF

Where do we go from here?

Changing the Ecosystem

Opportunities in managing optical networks:

- Like the car manufacturers that open up for diagnostics (OBD) systems to give the vehicle owner or repair technician access to the status of the various vehicle subsystems.
 - · Neutral third party network check.
 - Facilitates Training, Hiring and Outsourcing.

On-Board Diagnostics

- Opening up; potential for simpler fault management:
 - Interoperable transponders allows simple-to-use test instruments.
 - Test instruments allow to localize analog and digital performance issues and associate to degraded units.

Opening up packet-optical network control

Summary

Packet-Optical Networking

- 1. Vendor agnostic interoperability in optical networks facilitates Network planning and operations
- Performance targets of open optical Networks enable reliable be planning
- 3. disaggregating HW and SW simplifies Operating packetoptical networks
- IP traffic control combined with Open optical Networks enable deep insight into network performance through telemetry
- 5. Telemetry data fuels the automation of networking

