

Big data to the other side of the World Global Big Data and Compute at 100G

- NCI
- Copernicus
- Data transfer challenges
- Investigations with ICM
- Conclusion

- One of the two research HPC facilities in Australia
- Bringing together big data and compute
- National and Regional data custodian for many large data collections
 - CMIP
 - Asia regional Copernicus hub
- Refresh and upgrade of compute resources in progress for implementation mid 2019

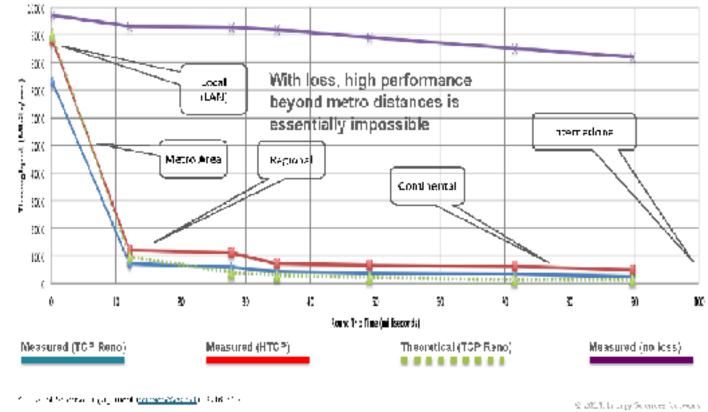
- Raijin
- 84,656 cores (Intel Xeon Sandy Bridge 2.6 GHz, Broadwell 2.6 GHz) in 4416 compute nodes
- 120 NVIDIA Tesla K80 GPUs in 30 nodes and 8 NVIDIA Tesla P100 GPUs in 2 nodes
- 32 Intel Xeon Phi (64 core Knights Landing, 1.3 GHz) in 32 compute nodes
- 4 IBM POWER8 nodes (64 cores running at 4.02GHz)
- 300 Terabytes of main memory
- Hybrid FDR/EDR Mellanox Infiniband full fat tree interconnect (up to 100 Gb/sec)
- 8 Petabytes of high-performance operational storage capacity
- FDR (56G) and EDR (100G) InfiniBand interconnect
- Full Fat Tree

- Tenjin
 - 33.5 Teraflop Private Cloud
 - OpenStack
 - 56G Ethernet
- Nectar
 - National research cloud
 - OpenStack
 - 56G Ethernet (Fat Tree)
- VMware
 - 10G Ethernet switched

- "The fastest filesystems in the Southern Hemisphere"
 - Disk
 - Lustre File systems
 - 140GB/s sustained I/O throughput
 - 37.1Pb over multiple filesystems
 - 56G FDR InfiniBand interconnect
 - Tape
 - Dual site moving to two + cold archive

- 10G. 56G and 100G Ethernet
- 40G (QDR), 56G (FDR) and 100G (EDR) InfiniBand
- Data Centre
- Science DMZ
- National (AARNet)
- International
- Monitoring, Operations and Design
- Big data transfers

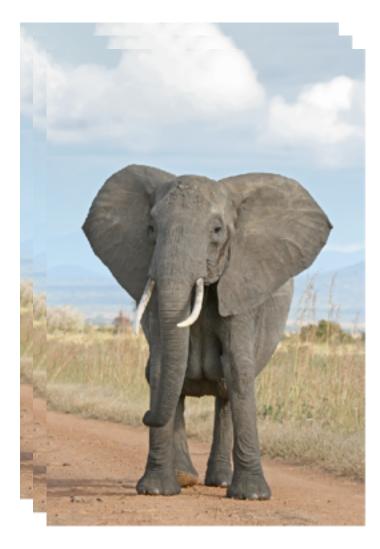
NCI National, Regional and Global big data

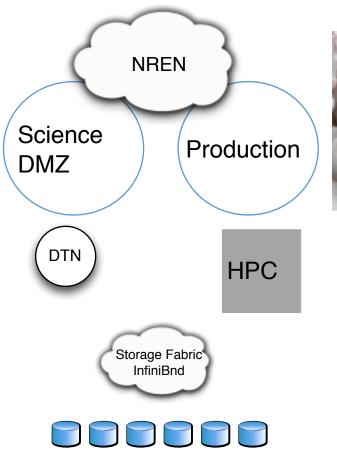

- High bandwidth, medium (domestic) to high (international) latency networks
- Traditional transfer tools perform at one to two orders of magnitude below available bandwidth
 - The greater the distance the lower the performance
- Science DMZ handles the "last mile" problem of firewalls, traffic shapers and other network restricting devices but is not the "magic bullet" for big data movement

By default TCP/IP does not perform well over high bandwidth, high delay circuits.

A small amount of packet loss makes a huge difference in TCP performance

Throughput vs. Increasing Latency with .0046% Packet Loss

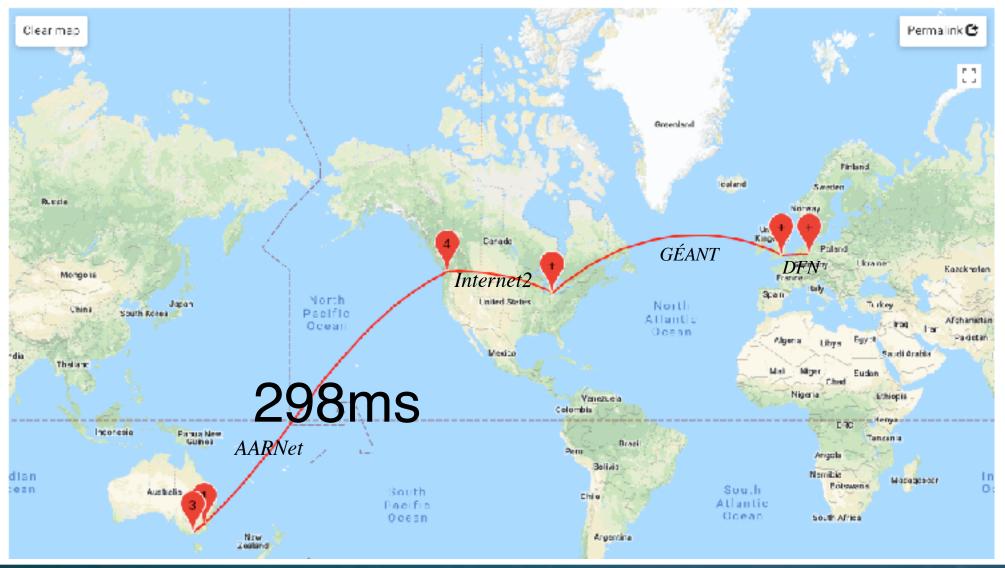


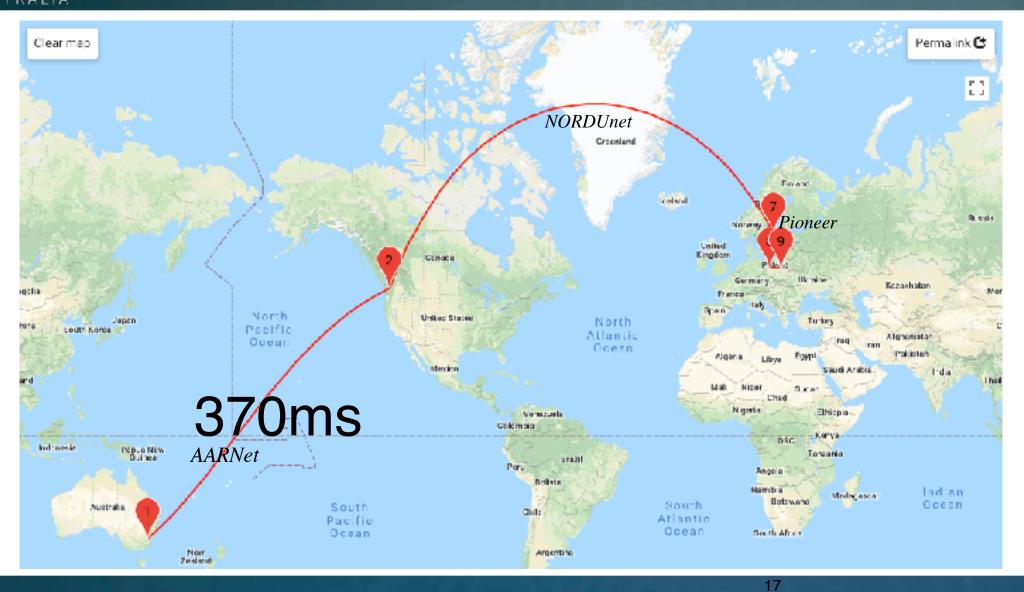


- Most remote data servers use protocols designed in the 90's (http)
 - Tools are optimised and tested within a regional environment
 - Europe, Americas, Asia
 - Oceania (Australia and New Zealand) are large data consumers
 - As a TCP/IP based protocol they suffer from TCP related tuning issues
 - Window Sizes
 - Congestion control
 - Highly sensitive to even small <1% packet loss with sever performance degradation
 - All sites must be tuned
 - DTN to DTN is performant but is a small subset of the transfer requirement
 - These do not scale well on a global scale
 - Commercial response by FANG (Facebook, Amazon, Netflix, Google) is global distributed CDN network to bring data closer to the user

Mice and Elephant Flows

- Satellites Pairs
 - Sentinel-1: polar-orbiting, all-weather, day-and-night radar imaging mission for land and ocean services
 - Sentinel-2: polar-orbiting, multispectral high-resolution imaging mission for land monitoring
 - Sentinel-3: multi-instrument mission to measure sea-surface topography, sea- and land-surface temperature, ocean colour and land colour with high-end accuracy and reliability
 - Sentinel-5 Precursor also known as Sentinel-5P: forerunner of Sentinel-5 to provide timely data on a multitude of trace gases and aerosols affecting air quality and climate
 - Sentinel-4: payload devoted to atmospheric monitoring that will be embarked upon a Meteosat Third Generation-Sounder (MTG-S) satellite in geostationary orbit
 - Sentinel-5: payload will monitor the atmosphere from polar orbit aboard a MetOp Second Generation satellite
 - Sentinel-6: radar altimeter to measure global sea-surface height





- Data is delivered as a set of small and large files
 - Thumbnails
 - ZIP files containing satellite images

NCI Network Path NCI to SCIHUB

NCI Network Path NCI to ICM Poland

- Accelerating http using Squid
- Regional delay products and source tuning limits effective download rate
 - ICM Poland Authenticated squid
 - Direct cache (AARNet4 10G)
 - Client at NCI requests download, squid at ICM manages first party transfer from ESA and pipelines the flow to NCI
 - 2x 3x transfer rate increase over same network
 - Tired Cache (AARNet-X 100G)
 - Selectively control the data routing to 100G service

- Mellanox SN2100 (16 port 100G) switches
 - x86 CPU
 - Spectrum chipset
- Network OS
 - Cumulus Linux
- 200G national core carried over DWDM OTN network
- L2 and L3 transport
- Low cost of 100G edge ports

- Object based
 - Mix of small (40Kb png), medium (50-70Mb zip) and large (1-2Gb zip)
- https GET used for transfer protocol
- Periodic (15 minute) queries to ESA hubs
 - Returns a list of downloadable products
- Each hub (S1,S2,S4,S4,S5) has different available download quotas and are tuned for European delay products and 1500 MTU.
- Republished product sets may appear without notice
- Highly parallel

- 10G AU
 - BPD 351ms * 10,000,000,000/8 = 442.5 M
- 100G AU
 - BPD 354ms * 100,000,000,000/8 = 4.4 G

- Direct from Australia
 - •~2.5Mbs
- Using ICM proxy
 - •~5-7Mbs
 - 2-3x improvement

- Download Results:
- gid Istatlavg speed I %lpath/URI

- e215a9IOK | 3.7MiB/sl100lscihub_S3// S3A_SL_2_LST___20180531T201936_20180531T202236_2018 0531T212328_0179_031_385_0180_SVL_0_NR_003.zip
- Status Legend:

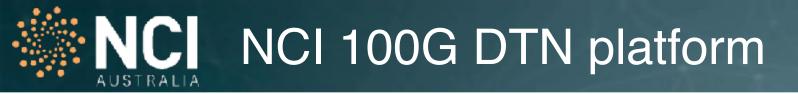
NCI Effect of Congestion control Mismatch

• NCI HTCP, ICM CUBIC

[4]	local 203.0.19	9.11	port 35926 com	nnected to 213.13	35.59.17	'8 port 5201
[ID]	Interval		Transfer	Bandwidth	Retr C	Ewnd
[4]	0.00-10.00	sec	6.81 MBytes	5.71 Mbits/sec	0	696 KBytes
[4]	10.00-20.00	sec	89.8 MBytes	75.4 Mbits/sec	0 7	.41 MBytes
[4]	20.00-30.00	sec	221 MBytes	186 Mbits/sec		4.64 MBytes
[4]	30.00-40.00	sec	188 MBytes	157 Mbits/sec	09	.47 MBytes
[4]	40.00-50.00	sec	400 MBytes	336 Mbits/sec	0 1	.9.6 MBytes
[4]	50.00-60.00	sec	778 MBytes	652 Mbits/sec	03	7.1 MBytes
[4]	60.00-70.00	sec	258 MBytes	216 Mbits/sec	11728	19.8 KBytes
[4]	70.00-80.00	sec	5.00 MBytes	4.19 Mbits/sec	554	540 KBytes
[4]	80.00-90.00	sec	63.8 MBytes	53.5 Mbits/sec	06	.05 MBytes
[4]	90.00-100.00	sec	339 MBytes	284 Mbits/sec	0 1	.7.4 MBytes
[4]	100.00-110.00	sec	695 MBytes	583 Mbits/sec	03	3.4 MBytes
[4]	110.00-120.00	sec	694 MBytes	582 Mbits/sec	13220	16.8 MBytes
-							
[ID]	Interval		Transfer	Bandwidth	Retr	
[4]	0.00-120.00	sec	3.65 GBytes	261 Mbits/sec	27611	sender
[4]	0.00-120.00	sec	3.62 GBytes	259 Mbits/sec		receiver

NCI Effect of Congestion control

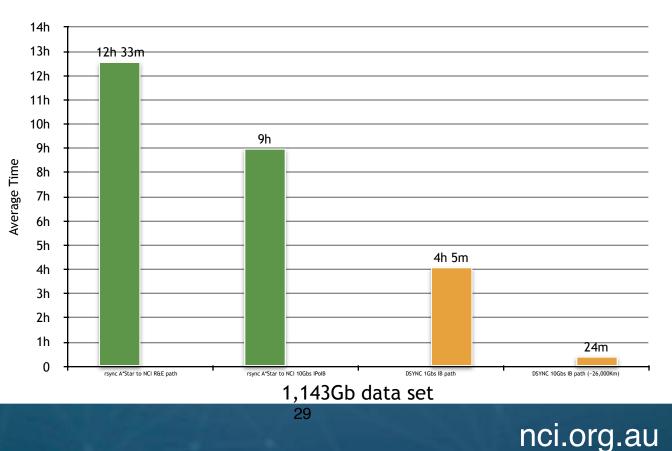
• NCI HTCP, ICM HTCP


[4]	local 203.0.19	9.11	port 36326 co	nnected to 213.1	35.59.178	port 5201
[ID]	Interval		Transfer	Bandwidth	Retr Cw	nd
[4]	0.00-10.00	sec	7.63 MBytes	6.40 Mbits/sec	0 6	79 KBytes
[4]	10.00-20.00	sec	87.1 MBytes	73.0 Mbits/sec	07.0	92 MBytes
[4]	20.00-30.00	sec	291 MBytes	244 Mbits/sec	98 9.1	13 MBytes
[4]	30.00-40.00	sec	336 MBytes	282 Mbits/sec	0 15	.5 MBytes
[4]	40.00-50.00	sec	630 MBytes	528 Mbits/sec	0 29	.5 MBytes
[4]	50.00-60.00	sec	392 MBytes	329 Mbits/sec	3753 9	.55 MBytes
[4]	60.00-70.00	sec	360 MBytes	302 Mbits/sec	0 16	.9 MBytes
[4]	70.00-80.00	sec	675 MBytes	566 Mbits/sec	0 32	.1 MBytes
[4]	80.00-90.00	sec	615 MBytes	516 Mbits/sec	3201 1	0.8 MBytes
[4]	90.00-100.00	sec	380 MBytes	319 Mbits/sec	0 16	.9 MBytes
[4]	100.00-110.00	sec	655 MBytes	549 Mbits/sec	0 30	.8 MBytes
[4]	110.00-120.00	sec	750 MBytes	629 Mbits/sec	15023 16	.6 MBytes
-							
[ID]	Interval		Transfer	Bandwidth	Retr	
[4]	0.00-120.00	sec	5.06 GBytes	362 Mbits/sec	22075	sender
[4]	0.00-120.00	sec	5.03 GBytes	360 Mbits/sec		receiver

[ID]	Interval		Transfer	Bandwidth		
[4]	0.00-10.00	sec	702 MBytes	589 Mbits/sec		
[4]	10.00-20.00	sec	1.10 GBytes	942 Mbits/sec		
[4]	20.00-30.00	sec	1.10 GBytes	942 Mbits/sec		
[4]	30.00-40.00	sec	1.10 GBytes	942 Mbits/sec		
[4]	40.00-50.00	sec	528 MBytes	443 Mbits/sec		
[4]	50.00-60.00	sec	461 MBytes	387 Mbits/sec		
[4]	60.00-70.00	sec	567 MBytes	475 Mbits/sec		
[4]	70.00-80.00	sec	804 MBytes	674 Mbits/sec		
[4]	80.00-90.00	sec	1.06 GBytes	909 Mbits/sec		
[4]	90.00-100.00	sec	1.10 GBytes	942 Mbits/sec		
[4]	100.00-110.00	sec	1.10 GBytes	941 Mbits/sec		
[4]	110.00-120.00	sec	1.10 GBytes	942 Mbits/sec		
-							
]	ID]	Interval		Transfer	Bandwidth	Retr	
[4]	0.00-120.00	sec	11.8 GBytes	846 Mbits/sec	38185	sender
[4]	0.00-120.00	sec	10.7 GBytes	763 Mbits/sec		receiver

NCI Friction Free Data movement

- We need to provide our HPC centres and researchers with a friction free data transfer system
 - Easy to use
 - Secure using a Federated Access system
- The network and tools should have the data in the right location at the right time
- Able to effectively use different storage tiers
 - SSD
 - Spinning Disk
 - Tape
- The researcher creates a Data Intent definition
 - Data Source
 - Data Target
 - Transfer priority (High, Medium, Low)
 - Storage performance (SSD, Disk, Tape)
 - optional Network intersection


- PowerEdge R740
- 2 * Skylake Intel(R) Xeon(R) Gold 5122 CPU @ 3.60GHz (fam: 06, model: 55, stepping: 04)
- 4 * Intel 10G Network Adapter
- 1 * Mellanox Connect-x5 (Single port) 100G Ethernet
- 1 * Mellanox Connect-x5 (Dual port) EDR InfiniBand

4Tb SSD

30Tb RAID5 HDD

- Sentinel
 - Many http gets
- CMIP5
 - Globus gridftp
 - Parallel streams
- InfiniCloud DSYNC, BeeGFS
 - Continual 9.98G UDP flow

• Middleware layers - eXtreme Data Cloud

- Large data transfers need to be considered as more than a web based system
 - At the Design phase not as an afterthought
 - Better protocols
 - Easier troubleshooting
- Our NREN collaborations allows us to overcome many of these problems and I would like to thank my colleagues from ICM, Geant and DFN for their kind assistance

For more information or remote performance testing please contact me

andrew.howard@anu.edu.au

Acknowledgements

Australian Research Council

InfiniCortex 2.0: Convergence and integration of global scale research networking; big data generation, flow, storage and processing

Marek Michalewicz, Jaroslaw Skomial

ICM, University of Warsaw

TNC18, June 2018, Trondheim

icm.edu.pl

- About ICM
- InfiniCortex & ICM
- DTN & ICM
- Inter-Data Center 1,2Tb/s testbed
- Future work

Stm ICM, University of Warsaw

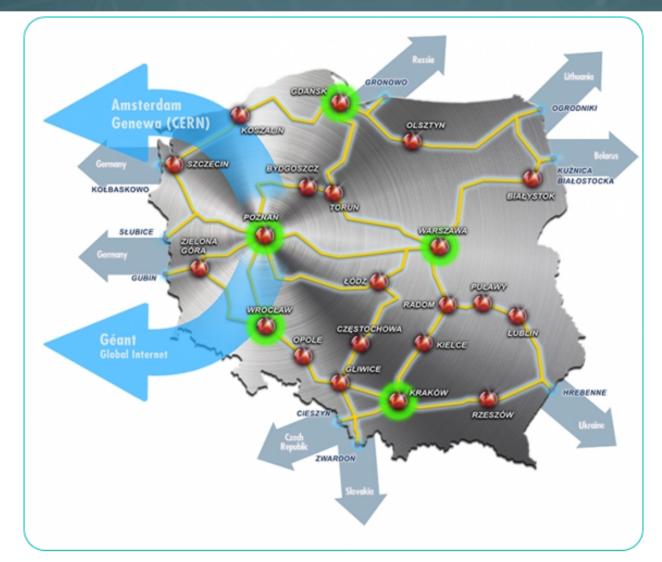
Interdisciplinary Centre for Mathematical and Computational Modelling

People at ICM:

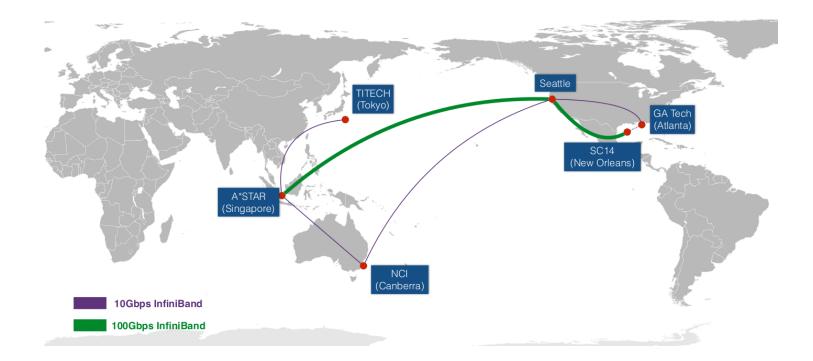
- researchers,
- software developers,
- IT administration,
- HPC experts

Hardware:

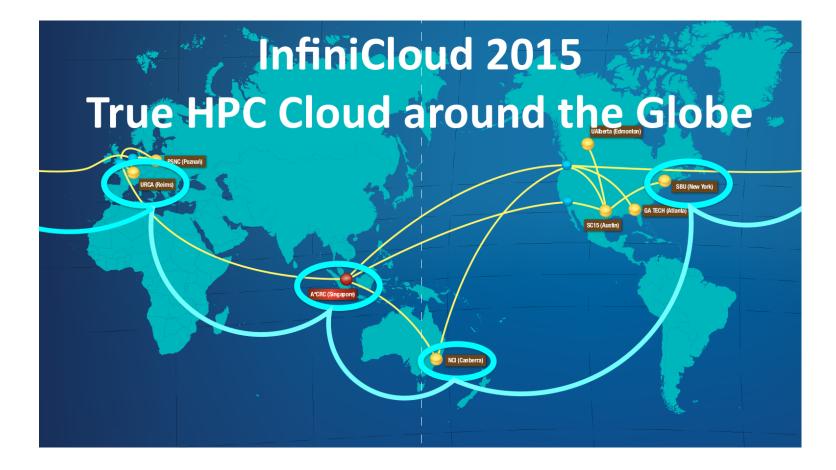
- 5 HPC systems (inc. Cray XC40), 2.1 PetaFlops peak performance
- dedicated cluster for DataScience


Stm ICM, University of Warsaw

- ICM operates two Data Centers in Warsaw with variety of HPC systems
- Research and services: visualization, PCJ (Parallel Computing in Java), Virtual Library of Science, HPC resources for science
- meteorology (<u>www.meteo.pl</u>) 150 000 000 visits per year
- Research works in HPC/networking area:
 - high bandwidth connectivity (>1Tb/s)
 - Long distance data transfers
 - Data Transfer Nodes
 - Remote HPC systems integration

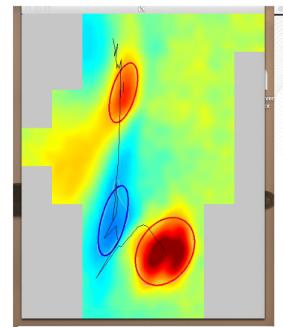

PIONIER network

- 5 HPC Centers and MAN networks
- Multiple international Connections
- Operated by Poznan Supercomputing and Networking Center
- Over 7500 km of fiber cables
- Owned infrastructure



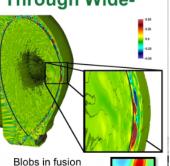
InfiniCortex

- Initiated in 2014 and run subsequently in 2015 and 2016
- initiated in Singapore by A*STAR Computational Research Centre under direction of Dr Marek Michalewicz
- purpose: create concurrent Galaxy of Supercomputers connected across the globe with RDMA
- long range InfiniBand using Obsidian Strategics IB range extenders



InfiniCortex

- closed the ring around the Globe with fully InfiniBand connectivity
- sub-nets with NEW IB routers (CrossBow from Obsidian Strategics)
- InfiniCloud created by Jakub Chrzęszczyk & Andrew Howard



Remote Fusion Experiment Data Analysis Through Wide-Area Network

Abstract:

We demonstrate remote data processing capability of large and high-throughput science experiment through cross-Pacific wide area networks and show how we can manage science workflow executions remotely by using ORNL ADIOS data management system and FNAL mdtmFTP data transfer system.

In this demo, we show a fusion data processing workflow, called Gas Puff Imaging (GPI) analysis, to detect and trace blob movements during fusion experiment. We send GPI data streams from Singapore to Fermilab for near-real time analysis. ADIOS manages analysis workflows and mdtmFTP transports stream data.

reaction (EPSI

project)

Blob trajector

A OAK RIDCE

InfiniCloud

- From 2014 6-8 applications shown each year with various partners at SuperComputing
- ICM joined InfiniCortex and participated SC demos since 2015

- Demo at SC16, Salt Lake City
- Work BY C.S. Chang and others

ut","pipe":"MdtnManPipe@","putshape":[1,1,64006],"putsize":256024,"var":"data", "varshape":[8,8,64006],"varsize":15385336] batomager:idataman_write_c() batoManager:idataman_write_c() DatoManager:idataman_write[) "doid":"nstr_opl-chunk.chb.bp","dtype":"float","offset":[1,5,0],"operation":"p ut","pipe":"MdtnManPipe@","putshape":[1,1,64006],"putsize":256024,"var":"data", "varshape":[8,6,6400],"varsize":1538536]

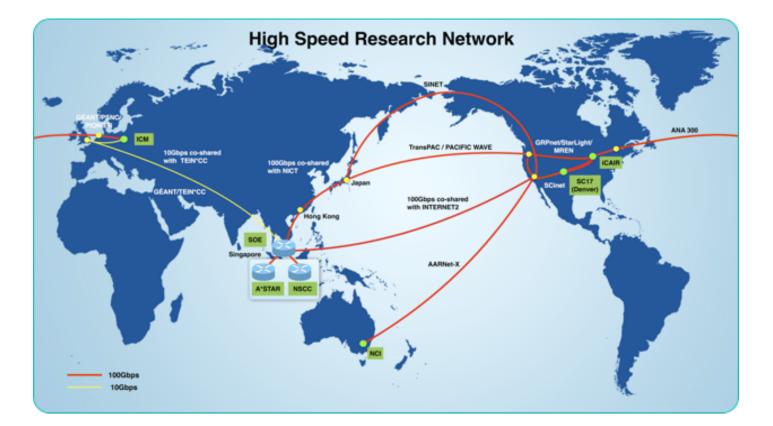
	RUTGERS Execution
type::+float",=offsct":[1,3,6],"operation":"put","pipe::HdtmMapFipe@" ,"putshape":[1,1,64006],"outsiz",256024,"vor":"data","varshape":[8,8, 64006],"varsize":16385536) StreamMan::zma_top_rep_thread_func: {"doid":"nstx-gpl-chunk.ch8.bp","d type:"tfloat",=offsct":[1,4,6],"operation":"put","pipe":"MdtmMapFipe@" ,"putshape":[1,1,64006],"outsize":256024,"var":"data","varshape":[8,8, 64006],"varsize":16385536}	mdtm_schedule_threads: device=vda cpu=1
	321822168 bytes 0.26 MB/sec avg 0.77 MB/sec inst 91226112 bytes 0.34 MB/sec avg 0.00 MB/sec inst

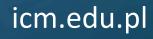
Stem DTN – ICM participation

- DTN nodes operating at various bandwidth (10-100Gb/s)
- 100Gb/s Data Transfer Node demo @SC17
- Collaboration on
 transfer performance

DTN INFRASTRUCTURE @ ICM

DTN node specification:

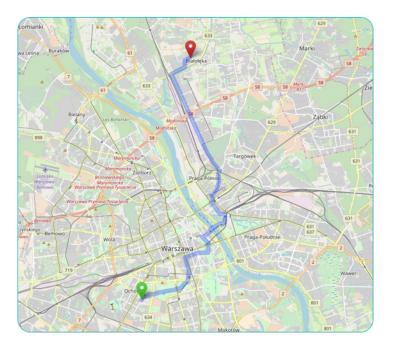

- 2x Intel(R) Xeon(R) CPU E5-2650 v3
 @ 2.30GHz
- 1x PCIe x16 for 100Gbit Ethernet with Mellanox ConnectX-4 (MT27700) network transfer ~98Gbit/s with MTU=9000
- 2x PCIe x8 for storage InfiniBand network with Mellanox ConnectX-4 (MT27700)


Storage specification:

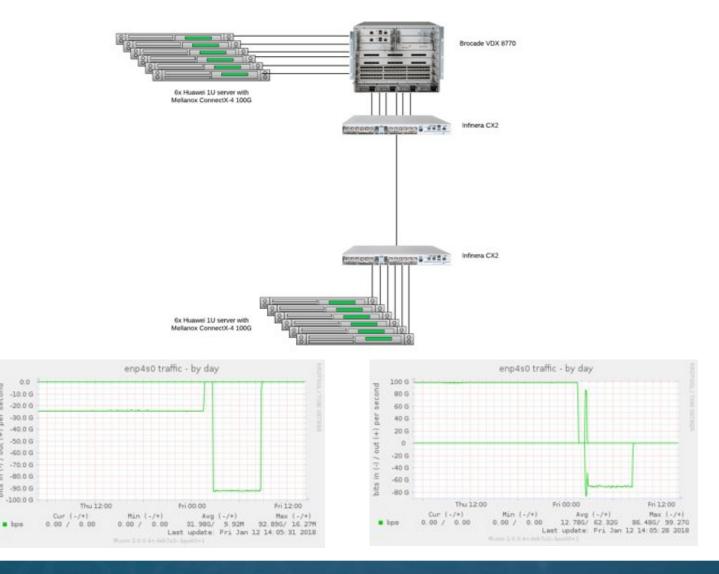
- Lustre 2.10.1
- 32 nodes:
 - 4 HDD in RAID5
 - single port InfiniBand card
 Mellanox ConnectX-3 (MT27500)
- 560TB fast storage space

Stem DTN – ICM participation

- 100Gb/s link from ICM to SC17 site
- 10Gb/s link from ICM to Singapore
- Successful cooperation of multiple
 NRENs
- Applications:
 - 1. Remote Medical Image Processing
 - 2. ESA Copernicus Satellite data transfer



icm Inter - HPC Data Center connection


- 1,2 Tb/s (12 * 100Gb/s)
- Pair of Infinera CX2 devices
- Only two fibers
- 20 km
- Most recent Photonic Integrated Circuit (Infinera)
- Only 1U size
- 12 servers with 100Gb/s interface

icm Inter - HPC Data Center connection

- Integrated with ICM 100Gb/s infrastructure
- 12 servers with 100Gb/s interface

Sikm Future work

- Evolution of DTN infrastructure at ICM:
 - More 100G nodes connected to storage network
 - Collaborative work on transfer performance
- Implementations
- Asia Pacific Research Platform European Node in Poland
- HPC Centers in Poland PIONIER-based DTN network

DTN

Poznan Supercomputing and Networking Center

A*CRC, Singapore

NCI, Australia

Geant

Northwestern University, Starlight

1,2 Tb/s HPC DC Interconnect

Infinera

Mellanox

ICM Team

Marek Michalewicz - PI Robert Paciorek Marcin Semeniuk Sebastian Tymkow Mirosław Nazaruk Maciej Szpindler And others

شكر рахмат SDD3 n eat mahalo Баярлалаа dank je vinaka cnacu6i blagodaram спасибо faafet paidles matondo kiitos dankie B nanni nandri хвала tenki susuan tenki akun dankon ačiù (OSZONOM 88 bayarlalaa graçie ---3 enkosi chnorakaloutioun shukriya 🚆 мерси 0 didi madloba ありがとう nesi 3 tanemirt rahmet najis tuke mida ευχαριστώ dhanyavadaga T- Xièxie তোমাকে ধন্যৰাদ 힙

Thank you

cm