Next Generation Data Transfer Nodes (DTNs) For Global Science: Architecture, Technology, Enabling Capabilities

Joe Mambretti, Director, (<u>i-mambretti@northwestern.edu</u>) International Center for Advanced Internet Research (<u>www.icair.org</u>) Northwestern University Director, Metropolitan Research and Education Network (<u>www.mren.org</u>) Director, StarLight, PI StarLight IRNC SDX,Co-PI Chameleon, PI-iGENI, PI-OMNINet (<u>www.startap.net/starlight</u>)

> TNC 2018 Trondheim, Norway June 10-14, 2018

iCAIR

Introduction to iCAIR:

thwestern University Information Tech

Accelerating Leading Edge Innovation and Enhanced Global Communications through Advanced Internet Technologies, in Partnership with the Global Community

- Creation and Early Implementation of Advanced Networking Technologies - The Next Generation Internet All Optical Networks, Terascale Networks, Networks for Petascale and Exascale Science
- Advanced Applications, Middleware, Large-Scale Infrastructure, NG Optical Networks and Testbeds, Public Policy Studies and Forums Related to Optical Fiber and Next Generation Networks
- Three Major Areas of Activity: a) Basic Research b) Design and Implementation of Prototypes and Research Testbeds, c) Operations of Specialized Communication Facilities (e.g., StarLight, Specialized Science Networks)

0

Topics

- Motivation For Data Transfer Nodes (DTNs)
- Science DMZ 101
- Regional/National/Global DMZs (i.e., Regional, National and Global Research Platforms)
- Programmable Network Techniques and Devices (DTNs In Context)
- DTN 101
- Current DTNs
- Emerging Next Generation DTNs
- Results of Recent DTN Research Experiments
- Future DTNs
- Conclusions

Motivations

- Data Intensive Science With Today's Networks, Even R&E Networks, It Is Difficult To Transport Extremely Large Files and Collections of Many Files Over WANs, Especially Over Multi-Domains
- Also, However,
- Al Training/DL
- Distributed Storage Systems
- NFV
- Low Latency Services and Applications (Increasing Robotics)
- Low Latency And High Capacity/Big Data Applications

Compilation By Maxine Brown

Science DMZ 101– Segmentation Of Data Intensive Flows (Ref:fasterdata.es.net)

0

Energy Science Network (ESnet Innovation)

Global Research Platform: Building On CENIC/Pacific Wave, GLIF and GLIF GOLEs (e.g., StarLight et al)

Current International GRP Partners

Programmable Network Techniques and Devices (DTNs In Context)

- Kernel By Pass
- SDN/SDX & Network Programming Languages
- Programmable Switch ASICs
- Programmable Network Processors
- FPGAs
- Smart/Programmable NICs
- Ref: Barefoot Tofino, Intel FlexPipe, Cavium XPliant, Netronome Agilio.
- P4 Based In-Network Telemetry
- AI/ML/DL Integrated With Network Programming
- RDMA (Remote Direct Memory Access)
- DPDK (Data Plane Development Kit)
- New Backplane/Switch Fabrics

DTN 101

- DTNs Are Purpose Built Servers Optimized For Data Transfer
- No "Standard" DTN Exists: Many Designs/Configs/ Architectures Have Been Implemented (e.g. Memory Intensive, Storage Intensive, Memory and Storage Intensive, Neither Memory or Storage Intensive, 1 G, 10 G 40 G, 100 G, Edge Device, Intermediate Device, WAN Device)
- Multiple OS Stacks (Custom Tuned)
- Multiple DTN Middleware Stacks
- Multiple Transport Protocols
- Multiple Environmental Contexts (Ref Previous Slide)

Flash I/O Network Appliance (FIONA)

- FIONAs PCs [ESnet DTNs]:
 - ~\$8,000 Big Data PC with:
 - 10/40 Gbps Network Interface Cards
 - 3 TB SSDs
 - Higher Performance at higher cost:
 - +NVMe SSDs & 100Gbps NICs Disk-to-Disk
 - +Up to 8 GPUs [4M GPU Core Hours/Week]
 - +Up to 196 TB of Disks used as Data Capacitors
 - +Up to 38 Intel CPU cores or AMD Epyc cores
 - US\$1,100 10Gbps FIONA (if 10G is fast enough) FIONAS—10/40G, US\$8,000
- FIONettes are US\$300 EL-30-based FIONAs
 - 1Gbps NIC With USB-3 for Flash Storage or SSD
 - Perfect for Training and smaller campuses

Phil Papadopoulos, SDSC & Tom DeFanti, Joe Keefe & John Graham, Calit2

Emerging Next Gen DTNs

- New Experimental Research Using DTNs
- iCAIR Innovations In DTNs For Data Intensive Science (Current: Developing 5th Gen)
- Focus Is On 100 Gbps And Multiple 100 Gbps
- Agency Innovations: NRL, NASA GSFC, ESnet
- Advanced Industry Components (e.g., NUMA, NVMe, Path Fabrics)
- Design Innovations (Thread Management, Optimal Affinity Bindings, NUMA Optimization)

Non-Volatile Memory Express (NVMe)

- Non-Volatile Memory Host Controller Interface
 (NVMHCI) Work Group
- Standard Architecture Specification For PCIe SSDs (Designed Specifically For faster Devices vs Traditional)
 - Register Interface
 - Streamlined Commands
 - Attributes
- Optimizes Host ⇔ Storage
- NVMe Sends I/O Commands/Results To Shared Memory In Server via PCIe Interface
- Parallel I/O Using Multicore Processors
- One Message Queue Supports: 64,000 Commands

Supports 65,535 I/O Queues

SUPERMICRO 24X NVMe SUPER

NVMe Type A: 8 X Intel P3700 800G

(intel)

NVMe Type B: 8 X SamSung 950 512G

+ M.2 to U.2

Adopter

Dell 14G Solution Configuration (Co-Research & Development in Collaboration with Dell)

PowerEdge R740XD Server

- 2 X Intel® Xeon® Gold 6136 3.0G,12C/24T,10.4GT/s 2UPI,24.75M Cache,Turbo,HT (150W)
- 192G DDR4-2666
- PCI-e Configuration Investigation:
- 2 X Mellanox ConnectX-5 100GE VPI
- 4 X Kingston/Liqid AIC NVMe PCI-e X8 SSD Drives

Optional SAS/SATA Drives

3G / 3G + Clock Is Critically Important R L I G H T™

Recent DTN WAN Experimental Research

- Motivated By Large Scale Science
- LHC
- LSST
- ESA
- Geophysical Sciences
- Genomics
- BioInformatics
- Precision Medicine
- Etc

Global Research Platform: Global Lambda Integrated Facility Available Advanced Network Resources

Visualization courtesy of Bob Patterson, NCSA; data compilation by Maxine Brown, UIC.

iCAIR

Global LambdaGrid Workshop 2017 Demonstrations, Sydney Australia

International Multi-Domain Provisioning Using AutoGOLE Based Network Service Interface (NSI 2.0) Using RNP MEICAN Tools for NSI Provisioning Large Scale Airline Data Transport Over SD-WANs Using NSI and DTNs Large Scale Science Data Transport Over SD-WANs Using NSI and DTNs SDX Interdomain Interoperability At L3 Transferring Large Files E2E Across WANs Enabled By SD-WANs and SDXs

Zaoh Harlan, E8net 8/26/2017

FILENAME 8C17-E8NET-DEMO8-V1.0.1.V8D

Implementing a SCinet DTN (DTN-as-a-Service, DaaS)

SC17 SCinet Data Transfer Nodes(DTN) Topology

Source; Jim Chen, iCAIR

PetaTrans: Petascale Sciences Data Transfer

A Disaggregated SCinet Optical Layer

Reconfiguration options

- Booth to booth connections Α.
- Booth to WAN connections B
- С Booth to switch or router connections
- D WAN to switch or router connections

Examples Α.

- B-B
 - Booth 1001-1 to 1002-1 via а optical layer
 - Booth 1001-1 to 1004-3 via b optical layer (assumes OLS2 to OLS4 path)
- B. Booth to WAN
 - Booth 1001-2 to PoP1-1 via a. OLS2-2 and OLS1-1
 - Booth 1001-2 to PoP2-B1 via b. OLS2-2, OLS4, OLS6 and OLS5-1
- С Booth to switch/router
 - Booth 1001-3 to SW1-A1 а
 - b Booth 1003-1 to RTR1-A5 (assumes OLS4 to OLS6 path)
- WAN to switch/router D
 - PoP2-A1 (WAN2) to SW1-3 via a. OLS3-1 and OLS4-3
 - PoP2-A2 (WAN2) to RTR1-3 via b. OLS3-2 and OLS4-7

Notes

- Transponders could be from multiple vendors but for near term the links would need to be built with matching transponders.
- Controllers and orchestration systems are not shown but all Tpndr/OLS systems must be connected

Demonstrations of 400 Gbps Disk-to-Disk **SC17** WAN File Transfers using iWARP and NVMe Drives

An SC17 Collaborative Initiative Among NASA and Several Partners

Diagram by Bill Fink / Paul Lang - 8/14/2017

Dynamic Distributed Data Processing

StarLight SDX Geoscience Research Workflow

100 Gbps DTN Optical Testbed

Ciena's OPⁿ research network testbed

Additional WAN DTN Testing

- Preparation Tests Conducted By Se-Young Yu (iCAIR)
- DTNs:
- @iCAIR : Intel(R) Xeon(R) Gold 6136 CPU @ 3.00GHz, Mellanox ConnectX-5 100G NIC
- @PACWAVE LA : Intel(R) Xeon(R) CPU E5-2667 v4 @ 3.20GHz, Mellanox ConnectX-5 100G NIC
- @UvA : Intel(R) Xeon(R) CPU E5-2630 0 @ 2.30GHz, Mellanox ConnectX-3 40G NIC
- @CERN : Intel(R) Xeon(R) CPU E31220 @ 3.10GHz, Intel 82599ES 10G NIC
- Tuning Parameters :
- BIOS, CPU, NIC, TCP Stack, O/S and MTU Tuning Applied

Memory-to-Memory Test Results

Server (X 4 instances) : iperf3 -s ipaddr -p port Client (X 4 instances) : iperf3 -c ipaddr -p port -Z -fq-rate=B -t60s Where **B** is (link-speed/4).

	PACWAVE - LA (100G)	UvA (40G)	CERN (10G)
Sending	89.8% (89.8 Gbps)	89.8% (35.92 Gbps)	95.8% (9.58 Gbps)
Receiving	87.9% (87.9 Gbps)	92.5% (37 Gbps)	96.4% (9.64 Gbps)

Disk To Memory Test Results

Server (X 8 instances) : nuttcp -S -1 -sdz -P port < file Client (X 4 instances) : nuttcp -r -sdz -P port -i1 ipaddr > file

Starlight DTN	PACWAVE - LA (100G)	UvA (40G)	CERN (10G)
Reading from disk	91.68% (91.68 Gbps)	73.06% (29.22 Gbps)	74.77% (7.47 Gbps)
Writing to disk	53.67% (53.67 Gbps)	99.50%(39.80 Gbps)	77.9% (7.79 Gbps)

The BigData Express Project (BDE)

BDE Research Team November 2017

Wenji Wu, Phi Demar et al

BigData Express – Toward Schedulable, Predictable, and High-performance Data Transfer

A Cross-Pacific SDN Testbed

BigData Express SC'17 DEMO

- BigData Express: a schedulable, predictable, and high-performance data transfer service
 - QoS-guaranteed data transfer
 - DTN as a service
 - Network as a service
 - Distributed resource brokering/matching

A DOE/SC/ASCR-sponsored research project Software is available at: <u>http://bigdataexpress.fnal.gov</u>

Test methodology

- 3rd party data transfer
 - Disk-to-Disk
- mdtmFTP vs. GridFTP
- Test scenarios
 - Run1 1 data transfer job, transferring a 300GB file
 - Run2 2 parallel data transfer job, with each transferring a 300GB file
 - Run4 4 parallel data transfer job, with each transferring a 300GB file
 - Run8 8 parallel data transfer job, with each transferring a 300GB file
- Metric
 - Aggregate throughput

Source: Wenji Wu

Server 1 Hardware Configuration

- Two NUMA Nodes
 - 28 cores, Intel(R) Xeon(R) CPU E5-2683 v3 @ 2.00GHz
- 64GB MEM
- One 100GE Mellanox ConnectX-4
- 8 NVME Drives

wenji — root@datanode: /home/mdtmftp_server — ssh -l wenji 165.124.3... /dev/nvme0n1p1 384448652 104925636 259971116 29% /disk0 /dev/nvme1n1p1 384448652 104925636 259971116 29% /disk1 /dev/nvme2n1p1 384448652 104925636 259971116 29% /disk2 /dev/nvme3n1p1 384448652 104925636 259971116 29% /disk3 /dev/nvme4n1p1 384448652 104925636 259971116 29% /disk4 /dev/nvme5n1p1 384448652 104925636 259971116 29% /disk5 /dev/nvme6n1p1 384448652 104925636 259971116 29% /disk6 /dev/nvme7n1p1 384448652 104925636 259971116 29% /disk7 69149704 63% /etc/hosts /dev/sdb1 192169564 113235132 shm 65536 65536 0% /dev/shm root@datanode:/home/mdtmftp_server#

Source: Wenji Wu

Server 2 Hardware Configuration

- Two NUMA Nodes
 - 24 cores, Intel(R) Xeon(R) CPU E5-2687W v4 @ 3.00GHz
- 24GB MEM
- One 100GE Mellanox ConnectX-4
- 8 NVME Drives

🖲 😑 🍧 🏠 wenj	ji — root@p	etatrans3: /h	nome/mdtmf	ftp_ser	rver — ssh -l v	wenji 165.124.33	.1
root@petatrans3	: /home/mdtr	nftp_serve	root	@petati	rans3: /home/w	enji — ssh -l	+
Filesystem	1K-blocks	Used	Available	Use%	Mounted on		
none	192169564	70829144	111555692	39%	/		
tmpfs	132019976	0	132019976	0%	/dev		
tmpfs	132019976	0	132019976	Ø%	/sys/fs/cgr	roup	
/dev/nvme12n1p1	769018760	104927996	625003824	15%	/disk12	-	
/dev/nvme13n1p1	769018760	104928004	625003816	15%	/disk13		
/dev/nvme14n1p1	769018760	104927980	625003840	15%	/disk14		
/dev/nvme15n1p1	769018760	104927996	625003824	15%	/disk15		
/dev/nvme8n1p1	769018760	104927984	625003836	15%	/disk8		
/dev/nvme9n1p1	769018760	104927992	625003828	15%	/disk9		
/dev/nvme10n1p1	769018760	104927980	625003840	15%	/disk10		
/dev/nvme11n1p1	769018760	104927984	625003836	15%	/disk11	•	
/dev/sda1	192169564	70829144	111555692	39%	/etc/hosts	Sourc	:e:
shm	65536	Ø	65536	0%	/dev/shm		
root@petatrans3	:/home/mdt	mftp_serve	r#				

Testing environment – 3rd party data transfer

Performance – Aggregate throughput

Gb/s	Run1	Run2	Run4	Run8
GridFTP	6.2Gbps	12.24Gbps	20.35Gbps	28.32 Gbps
mdtmFTP	13.27Gbps	23.80Gbps	28.354Gbps	43.94 Gbps

Future DTNs

- Enhanced Core Components
- Much Faster Channels
- Optimal Use of Multi Core
- Higher Clock Speeds
- Enhanced NUMA Management
- Enhanced Thread Bindings/Affinity Management
- Enhanced In Network Computing
- Integration Into Network Orchestration
- Enhanced Programmability (e.g., DTN + P4 Switch)
- 400 Gbps/Tbps

App1 Ap	ор2 Арр3	App4	EP1	EP2	Ind1	Ind2		
APIs Based On Messaging and Signaling Protocols Network Programming Languages Process Based Virtualization – Multi-Domain Federation – Policies Cascading Through Architectural Components Security Processes								
Policy Processe	es C	Orchestrator(s)			icy Processes			
Northbound Interface								
	SDN	Network OSs			State Data Bases			
State Machin	ies obn	Control O	ystems	Mo	Mon, Measurements			
Network Hypervisors Real Time Analytics								
Westbound Interfaces Eastbound Interfaces								
Southbound Interface								
PhyR Ph	yR PhyR	PhyR	VirR	VirR	VirR	VirR		

Orchestration And Al & Selected ML Frameworks (Of Many):

- Apache Singa
- Caffe
- H2O
- MLlib (Apache Spark)
- Scikit-Learn (Python)
- Shogun (C++)
- TensorFlow
- Theano (Python)
- Torch (~ Scientific Computing)
- Veles (C++, w/ Some Python)

IRNC: RXP: StarLight SDX A Software Defined Networking Exchange for Global Science Research and Education

Joe Mambretti, Director, (j-mambretti@northwestern.edu) International Center for Advanced Internet Research (www.icair.org) **Northwestern University** Director, Metropolitan Research and Education Network (www.mren.org) Co-Director, StarLight (www.startap.net/starlight) PI IRNC: RXP: StarLight SDX Co-PI Tom DeFanti, Research Scientist, (tdefanti@soe.ucsd.edu) California Institute for Telecommunications and Information Technology (Calit2), University of California, San Diego **Co-Director, StarLight Co-Pl Maxine Brown, Director, (maxine@uic.edu) Electronic Visualization Laboratory, University of Illinois at Chicago Co-Director, StarLight** Jim Chen, Associate Director, International Center for Advanced Internet **Research, Northwestern University**

> National Science Foundation International Research Network Connections Program

iCAIR

Workshop

Chicago, Illinois

May 15, 2015

ST 🔆 R L I G H T 🖏

Emerging US SDX Interoperable Fabric

Source; John Graham UCSD

П.

Building the Open Storage Network

Alex Szalay The Johns Hopkins University

Institute for Data Intensive Engineering and Science

Potential For Close Integration of DTNs & Large Scale Storage R L I G H T

Connections

Big Data Hubs

Summary

- Data Intensive Science As Well As Other Services and Applications Can Benefit From DTNs, Which Enable Enhanced Capabilities For High Performance LAN and WAN Data Transport, Including Customized Flow Management
- Key Enabling Capability: Using DTNs Integrated With Specialized WAN Paths, Including L2 Paths To Optimize E2E Data Flows, Including Disk To Disk
- Core Components Can Be Supplemented By Enhancing Software Stacks, e.g., Jupyter, NSI, MEICAN, P4 Programming, BDE, AI/ML/DL, etc
- Today, Many Components Exist To Create An E2E Services For Data Intensive Science
- Major Opportunity=> Creating DaaS Capabilities and Placing Them Into Production, e.g. Using the Global Research Platform (World-Wide Science DMZ)

www.startap.net/starlight

Thanks to the NSF, DOE, DARPA, NIH, USGS, NASA, Universities, National Labs, International Partners, L and Other Supporters

